Predictability of Seasonal Streamflow in a Changing Climate in the Sierra Nevada
نویسندگان
چکیده
The goal of this work is to assess climate change and its impact on the predictability of seasonal (i.e., April–July) streamflow in major water supply watersheds in the Sierra Nevada. The specific objective is threefold: (1) to examine the hydroclimatic impact of climate change on precipitation and temperature at the watershed scale, as well as the variability and trends in the predictand (i.e., April–July streamflow runoff) and its operational predictors (including 1 April snow water equivalent, October–March precipitation and runoff, and April–June precipitation) in a changing climate; (2) to detect potential changes in the predictability of April–July streamflow runoff in response to climate change; and (3) to assess the relationship between April–July streamflow runoff and potential new predictors and the corresponding trend. Historical records (water year 1930–2015) of annual peak snow water equivalent, monthly full natural flow, monthly temperature and precipitation data from 12 major watersheds in the west side of the Sierra Nevada in California (which are of great water supply interest) are analyzed. The Mann-Kendall Trend-Free Pre-Whitening procedure is applied in trend analysis. The results indicate that no significant changes in both the predictand and predictors are detected. However, their variabilities tend to be increasing in general. Additionally, the predictability of the April–July runoff contributed from each predictor is generally increasing. The study further shows that standardized precipitation, runoff, and snow indices have higher predictability than their raw data counterparts. These findings are meaningful from both theoretical and practical perspectives, in terms of guiding the development of new forecasting models and enhancing the current operational forecasting model, respectively, for improved seasonal streamflow forecasting.
منابع مشابه
Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow
Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environ...
متن کاملUsing the IHACRES model to investigate the impacts of changing climate on streamflow in a semi-arid basin in north-central Iran
Understanding the variations of streamflow of rivers is an important prerequisite for designing hydraulic structures as well as managing surface water resources in basins. An overview of the impact of climate change on the streamflow in the Hablehroud River, the main river of a semi-arid basin in north-central Iran, is provided. Using the LARS-WG statistical downscaling model, the outputs of Ha...
متن کاملDetermination of Climate Changes on Streamflow Process in the West of Lake Urmia With Used to Trend and Stationarity Analysis
One of the most important hydrological time series task is to determine if there is any trend in the data and how to achieve stationarity when there is nonstationarity behavior in data. Detecting trend and stationarity in hydrological time series may help us to understand the possible links between hydrological processes and global climate changes. In this study yearly, monthly and daily stream...
متن کاملInterseasonal covariability of Sierra Nevada streamflow and San Francisco Bay salinity
The ecosystems of the San Francisco Bay estuary are influenced by the salinity of its waters, which in turn depends on flushing by freshwater inflows from the western slopes of the Sierra Nevada. Estimates of full-natural flows in eight major rivers that flush the Bay are analyzed here by extended empirical-orthogonal-function analyses to characterize distinct ‘modes’ of seasonal flow and runof...
متن کاملSnowmelt Runoff and Water Yield along Elevation and Temperature Gradients in California’s Southern Sierra Nevada
Differences in hydrologic response across the rain-snow transition in the southern Sierra Nevada were studied in eight headwater catchments – the Kings River Experimental Watersheds – using continuous precipitation, snowpack, and streamflow measurements. The annual runoff ratio (discharge divided by precipitation) increased about 0.1 per 300 m of mean catchment elevation over the range 1,800-2,...
متن کامل